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FOREWORD

The analysis presented in this report was conducted when the author

was connected with this activity. Since that time the group now engaged

in work on spherical shells have revised the original manuscript, par-

ticularly the comparison of results based on the analysis in this report

with those based on earlier analyses.
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NOTATION

Ao, Al, AI 2  Plasticity coefficients

Bp, Plast'c axial rigidity

Dp Plastic flexural rigidity

E Young's modulus

E Secant modulus

Et Tangent modulus

d d2 ()
H Operator :2 +coto -+Z( )dga dO

h Shell thickness

K Ratido-f siess intensity to membrane stress in

x-direction r' - k + k2j

k Ratio of membrane stress in y-direction to that in

x-direction

M M Moments in x-and y-directions, respectively

Nx, N y Forces in x- and y-directions, respectively

P Pressure

Pcr Plastic buckling pressure

Pe Elastic buckling pressure

P Yield pressure
y

a Shear (see Figure 2)

R Shell radius

Sx, SE x and Es cy respectively

u, w Displacements In x- and z-directions, respectively
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Xyz Coordinates (see Figure Z)

Oc ~h z/12R

Y Shear strain

Ext E y Strains in x- and y-directions., respectively

Ee EU-l1 -s~train

Ei Strain intensity

EP Plastic strain

E110e E2
1  Variational membrane strains in x- and y-directions,

respectively

Plasticity reduction factor

Bijlaar 1lasticity reduction factor

q Gera r4  ,ti city reductijnn factor

qL Plasticity reduction factor developed in present paper

e Angle (see Figure 2)

Ile Elastic Poisson's ratio

ps, Secant Poisson's ratio

Tangent Poisson's ratio

Stress intensity

X0 y Stresses in x- and y-directions, respectively

Shear

PR (I - P8 2 )

ZE h



Xl 1 , X2 ' Variational curvatures in x- and y-directions,

re spectively

* Angle (see Figure 2)

Primes refer to variational values during the buckling process.
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ABSTRACT

A solution for the plastic axisymmetric buckling of thin-

walled spheres under hydrostatic pressure is derived. The

theory accounts for strain-hardening of material and changes

of Poisson's ratio in the plastic range. The plasticity

reduction factor is expressed in terms of tangent and secant

moduli and new concepts of tangent and secant Poisson's

ratios. For typical engineering materials there is little

difference between the results obtained from this solution

and the earlier ones obtained from the solutions of BiJlaard

and Gerard.

INTRODUCTION

Spherical shells have become more prominent in the development of

submarines and deep-sea vehicles. Complete spheres are being used

for oceanographic research vehicles; the TRIESTE is a notable example.

On the other hand, hemispheres are being used to effect closure at bow

and stern of advanced submarine designs. Indications are that spherical

shells will be used more and more extensively in the future.

.A number of investigators have treated the small-deflection analysis

of spherical shells subjected to external pressure. Both elastic and

inelastic buckling have been studied. Timoshenko1* summarized the

classical, linear. small-deflection theory for the elastic buckling'

* References are listed on page 17.



pressure of complete spherical shells which was first developed by

Zoelly in 1915. An expression for the plastic,ssmall-deflection buckling

2 3
of spherical shells was first derived by Bijlaard. Gerard obtained an

identical expression using deformation theory of plasticity in which the

work of Stowell4 for flat plates was extended to cylindrical and spherical

shells. Both Bijlaard and Gerard in their analyses assumed Poissonvs

ratio to be equal to a constant, 1/2. Gerard, however, intuitively modi-

fled his expression to include a variable Poisson's ratio.

In this report theory is presented for the plastic, small-deflection

buckling of a complete spherical shell of strain-hardening material under

2 3
external hydrostatic pressure. Whereas Bijlaard and Gerard assumed

that Poisson's ratio in the plastic range is r constant, 1/2, this analysis

considers a variable-Paidion's ratio. The results of this more rigorous

analysis are compared with the existing analysis for spherical shells. A

material with an assumed stress-strain relationship is used.

PLASTIC BUCKLING THEORY

VARIATIONS OF FORCES AND MOMENTS

Before the equations of equilibrium of an element within a spherical

shell can be established, the variations of the forces and moments result-

ing from the buckling process must be obtained. The variational forces

and moments will be obtained by extending the theory of Reference 5 to

spherical shells.
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In brief, Reference 5 uses the deformation theory of plasticity gener-

alized for a variable Poisson's ratio. The plasticity theory assumes a

monotonically increasing stress-strain curve of the strain-hardening

type; see Figure 1. It is assumed that Poisson's ratio is a function of

the state of stress and varies from its elastic value Pe = 1/3 to an upper

limit of ps 1/2 for an isotropic, plastically incompressible solid; see

Figure 1.

- I
-: •1- -'-- - -' -----

Ut I

U, U,,A*
- I

I E I

41 0 0,1 02 0.3 04 CL5 06 O7 Q8

STRAIN INTENSITY POISSON'S RATIOoui

Figure I - Variations of Strain and Poisson's Ratio with Stress

The btaxial state of stress and strain in a shell is related to the uni-

axial state of stress and strain for a simple compression specimen by

expressions for stress and strain intensities. For principal stresses

and strains these expressions are as follows:
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Stress Intensity:

02• °- + °%Z - d5[I
x y x y

Strain Intensity:

P "i- s + )(E + E +(4 -ps - 1)c E

Stress-Strain Relations:

x x 9 P

s

O 0

EXP [33
y E;

Y 2( + P~

Secant Modulus:

The expression for the plastic Poisson's ratio ±s is one derived by

6
Gerard and Wildhorn:6

Ps I Es(E

In Reference 5 these plastic stress-strain relations were used to

determine variational forces and moments for the axisyrmetric buckling

of cylinders. In this presentation, the axisy-mmetric buckling of spheres

will be analyzed. The expression for the varipition in strain intensity of

4



Reference 5 can be readily modified to apply to a sphere. This ecpression

with variations denoted by primes, was found to be:

2( - lZ)AoJL5SY]

+ [(. 1 +- 1) +2, [6]

where

Ao .1+( as [(2- (1z, - k]- 3(1 i- ps [7]

S

For a spherical shell deforming uniformly d d I ; therefore k -y- 1
x y0

2 x
and K 1. Also,

€[Ba]

Y 7.- xz. Sb

Equations [6] and [7] become

_ _+ (X I+xl xC

A- * i 11 " Et/Es (1-h') [0o 2(1 - ps) Ao

Lot S mE Ell].x ux

Then

S' E El--X (E -E)
Xt E)

Si



Let z = z when C! 0; then, from Equation [91
0 1

o X1+ XZ

Substituting Equations [8a], [91 and [13] into Equation [12] gives

C(E - Et)
St E(I'" zX') + X s (XZ' + tv(z - z) [14]

Similarly,

Eh (Es -E.)s'y E (• ••-• 2(1 - •)A° %'(Xj + X•("- zo) [is ]
0 0

Since d x +s
X

ips

st 1 + p S]p S

t 2 2- - [16]
P- s (1 ps

The variational axial force is

N +h/2 d' dz [17]x x
"-h/2

Substituting Equation [16] into Equation [17] and integrating gives

Nx Bp(A1 q + pHA12 1)[18

E h
where B m-, s - [19]

p a1- 6

6



4A ( ( 1 - [20]

Alu- - )•s(1 + Ps) [21]

A1S 0 (1~ - pl)

Similarly,

N B (Adq+ psAEly pA +sAI [22]

The variational axial moment is

i +h/z

M' zdz [23]
x x

"-h/2

Substituting Eqitttonf16] into Equation [23] and integrating,

M D (A xI + IsA 2 X2) [24]

where

E h3

S[25]
D =

Similarly,

M D (A, XZI + psAA1 2 X1) [26]

The plasticity coefficients A and A12 reduce to expressions obtained

by Gerard7 when 11 is set equal to 1/2.

.7



EQUATIONS OF EQUILIBRIUM

The equations of equilibrium for a shell buckling axisymnetrically are

given by Timoshenko as:*

dN' PR ii dw
+(N -N cot0-Q -- Rd 0

S( ) + -)
Pit- At+ -E cotO R+-w R02 RdQ RdOR

-_E +(M -M ) coto - Q R = 0
do x y x

The notation used is explained in FIgure 2. 'i terms of the displacenents,*
1

the variational membrane strains and variational curvatures are:

du w El = cot9 w

2~d R

Rdo R dO R do

Q can be eliminated by combining the first two qualities of Equations [27]
x

By substituting Equations [18), [22), (24), [26], and [28) into the

resulting two equations, there results

The displacements a and w are variational values but for convenience

will not bo denoted by primes.

8



S(I+ o [.A Zd-t-+A Coto -(p AlZ +A c:ot 2 )

(A +dsl)a0 (A Ew + A1 cot 0} dw -(,,~A,2 I AI €ot2 0 ) d!-L :
"" 3 12 dd d2 d

du +d.dnd

+(AI + psAI2ACrtdW (-I-cotI 2I)A +AlC9 )1t(A. 1 2  d • do3 dd2

d- 1 do1 -A t• +Al, cot 9) a

A ACt Lw+( -+ -uco A1- + A cot 0)• EWE3o

1 do 4 1 o3 11d

and

du dO 2

whe re

2 d ii 2

PR(1 -Ic(A)A+ t2 d
232

ZEh h32)

9



Eqquations [29] and [30] reduce to Equations [e] and If] on page 492 of

Reference 1 1=s E and F s 11

ii Figure - or e an-oe t on an -l m n of a p ei-h

At~

- N
Y

Figure 2 Forces and Moments on an Element of a Spherical Shell

PLATE BUCKLING EQUATION

The solution for the buckling pressure is practicalIly identical to that

described by Tirnoshenko in Reference 1. Thus, introducing a new

variable$ the angle i (see Figuire 2) as follows:

dod

and usning the symbol H for the operation

- +Coto i-, +?71
do 2  do

10



there is obtained from Equation [29J (after integrating once) and also

from Equation [30] the following:

A H(J) + c(AH(w) - (A1 + tsA1 2 )(* + w) -. ¼ +w) = 0 [33]

,(A HH(* + w) - (A 1 + IL A1 2 ) H(i) - O3AI + p1 Al 2 ) C(How + i)

+ Z(A1 + pAi z)(* +w) + C[-H(4) +H(w) + 2(0 +w)] a0 [34]

As in the case of the elastic theory, Equations [33] and [34] have

solutions in terms-of spherical functions. Rather than repeat steps

1
previously described, only the final buckling equation, resulting from

setting the determinant of two homogeneous equations equal to zero, is

•presented:

1-22 I- 22
2 1e 1 - 1"•2 [35]2 3:"cr s 00s

Equation.•.[39+-educes to the classical, elastic, small-deflection

theoryE ,a E  and P 8 e%

The plastic buckling equation is more easily related to the elastic

solution ff the concepts of secant and tangent Poisson's ratios are intro-

"diiced. The secant Poisson's ratio is the weighted average of the elastic

Poisson's ratio e and the fully plastic value ýtp; see Figure 1. Thus

I8Pe _-e + [36)

11



But P d E and d ./E, thus
e ifp 2p

F, [37]

Since c c E then
p i ei_

EI I - 1

-e i i 1p1

E E~ E£38]
P

Substituting Equation [38] into Equation [37],

E• •, - -[39]

ror a fully plastic, isotropic, incompressible material, lip 1/2. Then,

1 E

j.L - - ( I-- [L) £40)

Equation [40] is identical to Equation [5] presented byý Gerard and

Wildhorn6 as the plastic Poisson's ratio.

The tangent Poisson's ratio is defined herein as the number which,

when multiplied by the variation in strain, gives the variation in •train

in the transverse direction. Thus

S- + 1[41]

12



,Therefore,

Pt = 1[42)

The variation of Equation [40] is

Substituting Equations [40] and [43) into Equation [4Z] gives the final

expression:

1 E

L t

ptZ-" L e [44]

In termn ofthe secant and tangent Poisson's ratios, Equations [39)

and [44], Equation [35 can be show Nto be:

P 2. Et Es [45)cr

DISCUSSION AND CONCLUSIONS

Equation [45] may be compared with the classical, elastic solution

cr [46]

13

SEqhroghtion use of the patcmparedcwith fator qlassinel d eastcslio

cr= [47]

P

e

13i



Substituting Equations [45] and [46] into Equation [47]yields

E Et(l- e)2

~5t e [8
L E E ( 1 1 )1+ ) [48]S t s

2
Equation [48] reduces identically to that developed by Bijlaard and

3
Gerard if and ps are set equal to 1/2; thus

E Et(I - Le
nBG E (o.75) [49]

Equation [48] also reduces to that proposed by Gerard3 when he intui-

tively accounted for a variable Poisson's ratio in the plastic range, if pt

is set equal top, Ithus

E r (1 )
s tI e

IGE E( e) [50]
S (1 s

Equation [45], therefore, reduces to the following:

1. Zoelly's classical, small deflection, elastic theory when moduli

and plastic Poisson's ratios take on elastic values; see Equation [48].

2. Bijlaard's and Gerard's plastic solution when secant and tangent
I

Poisson's ratios are set equal to 1/2; see Equation [49].

3. Gerard's intuitively modified plastic solution when the tangent

Poisson's ratio is set equal to the secant Poisson's ratio; see Equation

[5o].

14



The collapse pressures as determined by the inelastic theories of

Bijlaard and Gerard are compared with Equation [45] of this paper in

Figure 3. The abscissa is the ratio of the classical, small-deflection,

elastic collapse pressure Pe to the pressure at which the average stress

reaches the yield point, P., as determined by the 0.2 percent offset

method. The ordinate is the ratio of theoretical inelastic collapse

pressure Pcr' (as determined by Equation [45) , Bijlaard and Gerard), to

P . A typical stress-strain curve for 7075-T6 aluminum bar stock has
y

been assumed in all theoretical calculations. There is little difference

between the pressures obtained from the inelastic theories of Bijlaard

and Gerard and the more rigorous theory developed herein. The maxi-

mum difference between the three theoretical collapse pressures for a

spherical shell of 7r075-T6 aluminum is about 2 percent; see Figure 3.

Similar results would be obtained for other strain-hardening materials.

Theory which fails to consider the effects of imperfections, residual

stresses, boundary conditions, and penetrations will not consistently

predict the collapse strength of spherical shells normally encountered

in engineering practice. However, this theory will, if verified by

experiment, serve as a reference to which tests of fabricated, spherical

shells may-beWaoYfipared to determine the detrimental effects of initial

departures from sphericity, variations in shell thickness, residual

stresses, boundary conditions, and penetrations.

15
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EQUATION 45

-IM
SIJLAARO (REFERENCE 2)

I.00

I GERARD REFERENCE 5)

085

'Gas
SI

' 0 1.0 2.0 3.0 4.0 5.0
Pi /Py

Figure 3 - Comparison of Inelastic Buckling Theories
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